您现在的位置是: 首页 > 空气质量 空气质量
布达佩斯天气预报30天_布达佩斯天气预报30天查询结果是什么意思
tamoadmin 2024-11-04 人已围观
简介1.ENIAC-第一个现代通用电子计算机的研制成功2.生活中的数学小知识100字3.有哪些让你一眼惊艳的**台词?4.海外有哪些让你感到震撼的城市建筑?5.电脑是谁发明的?6.科技的发展给我们的生活带来了哪些变化?给大疆无人机初学者的几点忠告:如果这是你的第一次飞行,你一定要远离人、车和钢结构建筑物。无人机的遥控飞行是肌肉记忆的训练,你所要做的就是在一个开阔安全的地方练习练习再练习。在你选定飞行场
1.ENIAC-第一个现代通用电子计算机的研制成功
2.生活中的数学小知识100字
3.有哪些让你一眼惊艳的**台词?
4.海外有哪些让你感到震撼的城市建筑?
5.电脑是谁发明的?
6.科技的发展给我们的生活带来了哪些变化?
给大疆无人机初学者的几点忠告:
如果这是你的第一次飞行,你一定要远离人、车和钢结构建筑物。无人机的遥控飞行是肌肉记忆的训练,你所要做的就是在一个开阔安全的地方练习练习再练习。
在你选定飞行场所之前,搜索当地的法律法规或咨询专业人士,因为不同地方的规则千差万别。例如,伦敦全市禁止无人机飞行,除非你有一个许可证;但你在布达佩斯哪怕从国会大厦上面飞过都是没有问题的——因为无人机作为新兴事务,很多国家和地区还没来得及制定相应的法规和条例。
最好的航拍画面是通过缓慢而流畅的连续飞行获得的,比如找一个前景,慢慢向上飞越,直到背后的惊人景色完全展现在画面之中。
切勿在人群头上飞行,在一些地方这是违法行为,而同时极端危险,切忌这样做。
飞行高度切勿超过500英尺,也切勿在机场附近飞行,这会给民用航空飞行器带来严重安全威胁,也会给操作者带来法律上的麻烦。
无人机的核心优势之一,就是可以拍到载人直升机航拍无法得到的镜头,比如在苏格兰城堡的拍摄中,有一段穿过窗户飞出的画面,非常惊人。必须用于创新尝试,发挥优势,拍出前所未有的效果。
无人机摄像技术的高低并不只取决于你的飞行操控技术。在熟悉无人机的同时还要加强学习摄像器材知识和技术,你懂得的越多,才能拍得越好。不同的拍摄需要不同的摄影机设置,才能获得最佳的效果。
在每次飞行之前做好。目前市面上绝大部分的无人机续航力有限,一般在15分钟左右,所以要最大限度地提高拍摄效率。细心的玩家可以看到,资深的航拍摄影师在航拍时不是盯着监控屏,而是更关注飞机和镜头在空中的位置。所以新手阶段就从盲拍起步的玩家会比监控起步的玩家获得更多心得,从而在每一次飞行中尽量获得最多的有效镜头,同时最好也要备足备用电池。
在飞行之前,查看天气预报并观察实际的天气条件。大多数无人机不能对抗风雨,即使极小的风雨也会让无人机和操作者感觉不适。在强风中飞行安全堪忧,同时得到的画面很可能无法使用。无论如何,等到天气条件较为有利时进行航拍是明智的选择
无人机技术并不会让你成为一名伟大的导演或伟大的摄影指导,你要始终把故事放在工具之前。观众希望看到的是故事,能够在情感层面上连接他们的故事。作为制作人,我们创作的是和启发人们的内容作品。而无人机独特的视角需要为故事服务,切不可把炫耀技术放在第一位。
ENIAC-第一个现代通用电子计算机的研制成功
匈牙利11月份温度是7℃至16℃之间。
匈牙利位于中欧,拥有温带大陆性气候,四季分明。11月份是秋季,气温逐渐下降。在匈牙利,11月份的平均气温大约在7℃至16℃之间。当然,具体的温度还取决于当地的天气状况和地理位置。11月份,匈牙利的天气逐渐变冷,昼夜温差较大。白天气温可能会达到16℃,而晚上气温可能会降至7℃。
在这个时候,游客需要准备适当的保暖衣物,如外套、羊毛衫和轻便保暖外套等。此外,游客还需关注当地的天气预报,以便做好应对突发天气变化的准备。在匈牙利,11月份的天气逐渐转变为多雨和阴天。降水量逐渐增加,湿度也相对较高。因此,游客在出行时需要携带雨具,以应对不时之需。
匈牙利的特点
1、地理位置:匈牙利地处北半球温带区内,位于喀尔巴阡山脉盆地,国土面积为93033平方公里。匈牙利地理位置优越,横跨欧洲东西交通要道,因此历史上曾多次成为东西方文化交融的桥梁。
2、气候特点:匈牙利气候变化较大,受大陆性气候、温和的海洋性气候和地中海亚热带气候的交汇影响。其中,大陆性气候较为显著,属大陆性温带阔叶林气候。匈牙利四季分明,春季湿润多雨,夏季炎热,秋季气候适中,冬季寒冷。
3、旅游:匈牙利拥有世界著名的旅游景点,如布达佩斯。作为匈牙利的首都,布达佩斯被誉为欧洲最美丽的城市之一。这里有着独特的建筑风格,如匈牙利国会大厦、圣伊斯特万大教堂等。此外,匈牙利还有许多历史悠久的城堡、温泉和博物馆等旅游。
以上内容参考百度百科-匈牙利
生活中的数学小知识100字
尽管阿塔纳索夫研制的计算机以及专利申请资料的遭遇不佳,但他留下的研制资料对后来通用计算机研制起了深远的影响。
1940年12月美国科学进步协会的年会上,阿塔纳索夫结识了莫克利(John Willian Mauchly, 1902 - 1980)。
当时,莫克利执教于费城郊区的厄西那斯学院,教授物理课程。他的父亲是一位物理学家,他本人毕业于约翰*霍普金斯大学,教课之于研究宇宙射线和太阳黑子对地球天气的影响。为了解决研究中的复杂计算问题,曾经研制一台模拟计算机用于计算。在这次大会上,他宣读了一篇论文,主题是关于如何通过机器计算比较天气和太阳活动。同时,也提出了如何改进计算装置提高计算的效率。他认为当时普遍使用的布什微分分析机在处理大量计算问题时有相当大的局限性以及效率低下,而机电式计算机由于机电部件反应缓慢(毫秒ms级别),解决问题的出路在应用电子电路(反应时间在微微秒级 ,其中1毫秒 = 1000 微妙)。
阿塔纳索夫听这篇报告后,非常兴奋,并在会后与莫克利谈到自己研制成功的电子计算机。尽管莫克利提到了应用电子电路制造计算机的想法,但仅仅是停留在构想阶段,得到这一消息非常震惊。于是,在阿塔纳索夫盛情邀约下,莫克利于1941年6月驱车赶往阿塔纳索夫所在的艾奥瓦州立大学计算机研究所参观那台专用电子计算机。
阿塔纳索夫给莫克利演示了ABC 计算机的计算过程,介绍机器的结构,讲述了其用穿孔卡片输入运算数据,以及如何用电子电路控制运算,电弧穿孔技术以及二进制电容存储技术。尽管不理解用二进制作为数据表示及运算的好处,但这台计算机极快的运算速度令莫克利感到着迷。他白天研究这台计算机的原理,晚上仔细研读阿塔纳索夫的专利申请材料。知己难遇,阿塔纳索夫毫不保留的把自己制造电子计算机的所有核心技术都讲解给了莫克利。
五天后,莫克利因为要参加美国国防部为宾夕法尼亚州立大学莫尔电气工程学院研究生办理的培训班匆匆离去。时间虽短,他对ABC 的关键技术了然于胸,并决定制造一台更完美的计算机。
在国防训练班的电子学课堂上,莫克利认识了在莫尔电气工程学院攻读研究生的埃克特(John Presper Eckert , 1919 - 1995)。埃克特富裕的家庭令他拥有一间带工作台的车库,从小迷恋电子设备的他在车库里制造了很多电子设备,这极大的锻炼了动手能力并积累了丰富的电气制造经验。莫克利向埃克特讲述了自己对电子计算机的构想,埃克特认可了该构想并认为可以实现。1942年莫克利转到宾州州立大学任教,教学之余与埃克特投入到ABC计算机的研究改造中去。同年,莫克利撰写《高速计算装置的使用》,在文中阐述了他们研制计算机的方案。
二战中,日本偷袭珍珠港后,美日开战。宾夕法尼亚州立大学的所有布什微分分析机被阿伯丁弹道实验室征用,用于弹道轨迹计算。尽管如此,弹道轨迹计算速度依然缓慢。负责计算弹道轨迹计算项目的戈德斯坦改进微分分析机,把一条60秒弹道轨迹计算时间压缩到20分钟内,但是每天计算6张包含900条弹道的火力表依然是困难重重,原因是微分分析机的机械部件速度缓慢并且计算精度低(1%)。
必须改进计算装置,但苦于没有相关人才。当得知莫克利的计算机方案后,戈德斯坦找到莫克利并且讲述了自己需求,并建议莫克利撰写一份研制计算机的报告提交美国军方。这份报告被讨论后,得到美国军方认可并确定了要制造的计算机名称为“电子数字积分机和计算机 Electronic Numerical Integrator And Computer” ,简称“ENIAC” ,中文翻译爱尼艾克。
1943年7月项目正式启动,美国军方提供15万美元研究经费,由莫尔电气学院用于制造一台秒级完成弹道轨迹运算的电子计算机,用于帮助计算火力表提高效率。
项目成立后,戈德斯坦作为军方代表协调和管理项目的执行,莫克利担任顾问负责ENIAC的总体设计,埃克特担任总工程师协助莫克利完成总体设计,负责解决制造中出现的一系列困难复杂的技术问题。莫尔学院同时召集大量的高级工程师等技术人员参与设计制造。
完成总体设计和基本准备后,就开始了具体的制造阶段。项目并不是一帆风顺的,埃克特一直泡在实验室里,不但对制造的电子元器严格把关,而且对制造过程中遇到的困难都深入分析,找寻解决方案。
1944年夏天,ENIAC进入到制造最关键阶段。一天傍晚,戈德斯坦上尉在弹道实验室返回费城的火车站 - 阿伯丁火车站遇到了当时已经世界闻名的数学家冯 诺伊曼博士(John Von Neumann, 1908 - 1957)。
冯 诺伊曼出生于匈牙利的犹太人家庭,父亲是一名银行家。冯 诺伊曼六岁会心算八位数字除法,八岁学会微积分。17岁冯 诺伊曼和他的教授合写了第一篇数学论文。1926年获得匈牙利布达佩斯大学数学博士学位,后转向物理学研究。到1930年,他已成为完成数理化皆通的学者,备受世人瞩目,先后在柏林大学,汉堡大学任教。美国数学家韦伯伦教授招收英才,使冯 诺伊曼有机会来普林斯顿大学任教。1933年,冯 诺伊曼与爱因斯坦一同被评为普林斯顿大学的终身教授,成为普林斯顿大学高级研究员数学所的6位奠基教授之一,随后由于德国纳粹迫害犹太政策,他加入美国国籍。二战后,冯 诺伊曼被选为美国科学院院士和原子能委员会委员,成为美国高级科学顾问之一。此时,他正参与“曼哈顿” ,即研制项目。
戈德斯坦怀着崇敬的心情走过去做了自我介绍,而冯 诺伊曼也没有摆架子,双方交谈融洽。戈德斯坦向冯 诺伊曼介绍自己正参与的研制每秒计算333次乘法运算的计算机时,冯 诺伊曼很感兴趣,并连连发问。原来,冯*诺伊曼参与的“曼哈顿” 遇到了和阿伯丁弹道实验室面临的相似问题 - 曼哈顿需要计算核裂变当量的计算量非常大,据估计超过有史以来所知计算量的总和,靠人力无法完成。他们调用了IBM公司的台式卡片机,并投入大量人力,但进展缓慢;后来,又调用了哈弗大学的机电式马克-I进行计算,仍然不能得到令人满意的计算速度。计算速度低下严重制约着项目的进展,当得知莫尔学院正在研制高速计算设备,岂能不心动 ?因为他知道这台机器一旦研制成功,“曼哈顿”的进度问题得到解决将成为可能。
1944年8月,冯 诺依曼来到莫尔学院参观ENIAC,提出的第一个问题是关于ENIAC的逻辑结构,这让埃克特暗自佩服。莫克利与埃克特邀请冯 诺依曼加入并担任顾问,并进行指导和支持。
冯 诺依曼的加盟对项目起到巨大作用,一方面,由于他的特殊身份,军方对项目的信心大增,项目资金也由最初的15万美元增加到接近50万美元,极大支持了项目因遇到问题不断修改方案的资金需求;另一方面,冯 诺依曼的技术才能位项目注入了活力,他加入后就参与讨论分析遇到的技术难题,尤其是存储问题。针对调试和制造中遇到的问题,总能给出独特的解决方案。对项目的成功起着莫大的作用。
1945年春ENIAC研制成功并投入运行,基本满足了设计要求。建成后的ENIAC俨然是一台庞然大物,占地168平米,占满整个房间。它有2.5米高,0.914米宽,30.48米长,重量达30吨。它使用16种不同型号的188000个电子管,1500个继电器,70000个电阻,18000个电容器,这些元件通过5万个焊头和11.265千米铜导线连在一起,机器时钟100KHZ,内部有20个字节的寄存器,每个字长10位,用十进制运算,速度达到5000次每秒。
用这台计算机,把60秒弹道轨迹的计算时间,由微分机需要的20小时缩短到30秒,满足了军方的火力表计算时限要求。随后,ENIAC又帮助曼哈顿顺利解决了核裂变的复杂方程问题,为第一课的研制成功加快了进度。
1946年2月10日,经过一年的试运行,ENIAC与世人见面。美国陆军军械部和莫尔电气学院共同举行了新闻发布会,宣布世界上第一台电子计算机由莫尔电气工程学院研制成功。
ENIAC研制成功并投入运行,标志着人类进入了新的计算时代,开启了信息时代的大门。美国《时代周刊》的一名记者在参观完ENIAC机的运算后写道:“它的电子智慧开启了一个新世界”。
ENIAC计算机投入运行后,被运送到马里兰州的军方阿伯丁试验基地。除了被用于弹道计算外,还为很多科研项目进行数据处理计算,其中最有名的是天气预报,飞机设计等风洞试验,原子核能计算,宇宙射线计算和圆周率计算等项目。人类历史上第一台通用电子计算机一直运行到1955年10月2日才退役,实际运行时长达80223小时。
仔细观察ENIAC的逻辑结构和设计,其设计思想都是ABC计算机的翻版。但是,莫克里并未向世人说明,不能不说是一种遗憾。
1967年霍尼韦尔公司与买下ENIAC计算机专利权的斯佩里兰德公司因ENIAC专利权发生一场官司。最终,经过6年取证和135次庭审,法院最终于13年判决斯佩里兰德公司败诉,判决ENIAC专利权无效。判决书写着:“莫克利和埃克特并不是自己最先发明了自动化的电子计算机,而是从阿塔纳索夫博士的发明中获得有关材料的。”
尽管,在整个庭审中和判决后,莫克利一直拒绝承认从阿塔纳索夫那里获取有价值的信息,但是人们从判决结果中认识到事情的原貌。阿塔纳索夫被称为真正的电子计算机之父。
ENIAC计算机与以往计算机相比,有很大的优点:
1) 计算速度快;
2) 有内部记忆存储能力;
3)有逻辑判断力;
4)计算结果有较高的准确度和可信度;
当然,也有很多缺点:
1)用十进制未用二进制,导致运算器设计复杂;
2)无程序存储能力;
3)存储容量小;
4)故障率高;
5)耗电量大;
ENIAC的缺点是在制造和调试过程中发现的,冯 诺依曼加入后提出了用十进制的缺点,运算器的复杂导致最终乘法运算速度只有每秒50未达到每秒333次的预期目标。但是项目已经完成早期设计,只能进行适当的维护和修补。
冯 诺依曼认识到改进设计对机器性能的影响,与莫克利和埃克特等项目组成员进行讨论研究,制定了改进方案。
1945年6月,冯 诺依曼起草一份新的计算机设计报告--《关于离散变量自动电子计算机的草案》,提交陆军军械部并获得批准用于研制新型计算机。在这份长达101页的报告中,冯 诺依曼给这种新型计算机命名为“散变量自动电子计算机”,简称“EDVAC”,中文音译“爱达法克”。
EDVAC的设计方案在两个方面根本解决了ENIAC的缺点:
1)以二进制代替十进制。二进制的状态,更容易用电子电路的断开与接通两种状态表达0,1;另一方面,运算得以简化,单位加法运算 只有0+0, 0+1, 1+0, 1+1四种状态,加减乘除都可以用加法器来实现,简化了运算部件的复杂程度和运算速度;
2)提出了在计算机内部存储器存储程序的概念。EDVAC机的内存用水银延迟线来存储指令,设计有个字节,程序指令以及数据通过穿孔卡片输入。机器把这些信息读入内存单元后,便可自动执行特定计算任务。若要改变计算任务,只需要读入代表不同含义的穿孔卡片即可自动完成不同计算任务,实现了通用性,避免人工手动干预,提高运算速度。
经过这两方面改进,EDVAC机的组成可分五部分:
1)运算器
用于加减乘除等算术运算及逻辑运算
2)逻辑控制器
用于自动控制机器指令,协调程序自动化执行
3)存储器
用于存储程序的指令和数据
4)输入装置
读入程序指令和数据,送至存储器
5)输出装置
把计算机运算结果和人们要求的数据送出
EDVAC机的设计方案奠定了现代计算机的结构框架,并沿用至今,这一体系结构被称为“冯*诺依曼机” 。
有哪些让你一眼惊艳的**台词?
1.生活中的数学小故事100字3篇要快,急
一个星期天的上午,我和爸爸妈妈在家里看电视,电视上正在播放一场蓝球比赛。
看了一会儿,爸爸突然对我说:“祺祺,我来考你一个数学问题,看看你会不会?”我张口就说:“好的,没问题。”爸爸想了一下,说到:“设红队一分钟投8个球,蓝队一分钟投6个球,他们一起投了8分钟之后,蓝队提高命中率一分钟投10个球,红队由于体力不支减少投球只数一分钟投6个球,问多少分钟后红队和蓝队投进的只数相同?” 我想了一会儿没做出来,过了好长时间他还是没想出来。
时间一分一秒的过去了,我实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算我有草稿本也未必做得出来。
这个时候,妈妈对我说:“原来红队一分钟比蓝队多投进2个,一共投了8分钟,也就是8*2=16(个);后来蓝队反超每分钟比红队多投4个,那么16个球要投几分钟呢?16÷4=4(分钟),要4分钟才能追上。”我说:“原来这么简单!我怎么没想到呢?”爸爸笑着说“简单嘛?这说明你考虑的思路有问题。
在现实生活中,我们要善于去发现事物,找出它们的规律,那你就会觉得生活中的数学比课堂上讲有意思多了。” 通过这件事,我发现生活中的数学确实是无处不在,生活中、学习中到处都有。
从此,我就更加喜欢数学了! 评论(2)3148 其他回答(2) 热心问友 2009-08-04 动物数学 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。
Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。
在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。
而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
参考资料:
蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。
“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。
珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。
天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报) 评论(1)62 白云 8级 2009-08-04 1.问:用平底锅每次煎两个饼,每煎熟一个饼正反面各需1分钟,因此一只饼从入锅到煎熟共需要2分钟,照这样,煎三个饼到少要用多少分? 答:3分钟。
第一分钟,先煎两个饼; 第二分钟,把一个饼翻过来,取出另一个饼,再放入一个新饼; 第三分钟,取出两面都煎好的一个饼,把另一个饼翻过来,再放入刚才已经煎了一面的饼。 2.问:某地的海水1000千克含盐3千克,1千克海水含盐多少千克?10千克的海水呢? 答:3÷1000=0.003千克 3.问:在日常生活中,我们经常要用一种交通工具——自行车,而自行车的车轮都作成圆形的,你知道为什么吗?能运用有关知识简单说一说车轴为什么要放在轮子的中心处? 答:为了使骑起来平稳 轴心到地面距离要不变,所以轮子是以轴心为圆心的圆,所以自行车的车轮都作成圆形的,车轴要放在轮子的中心处。
评论(1)43 相关知识 有关数学的生活中的小故事 9 2012-06-29 要生活中的数学趣味小故事 4 2013-06-15 数学故事大全 10 2012-06-18 数学小故事(短的) 1 2014-07-06 求10个数学小故事 要短的 6 2013-08-10 更多生活中关于数学的事生活中关于数学的事生活中关于数学的事相关知识>> 相关搜索 生活中的数学小常识生活中的数学故事。
2.生活中的数学 ,100字作文
在生活中,我们常常用到数学,在买卖物品时,会用到数学;在建筑房屋时,会用到数学;在计算数据时,会用到数学等等。
回顾自己小学六年来所学的许多数学知识,在生活当中不断的理解和运用,感觉到数学就在自己身边,在生活中。记得第九册学到三角形的时候,老师给我们讲了许多:从生活中熟悉的红领巾, 自行车的三脚架,埃及著名的金字塔等引出三角形,再通过推拉等实践活动认识三角形的稳定性。
并用它来解决一些生活中的实际问题。我还运用这个道理来修补家里的小凳子呢,把它加固的既稳当又结实,得到全家人的称赞呢。
从知识的掌握到运用不是一件简的事情,必须在充分理解的基础上加以培养应用意识。我们的数学王老师,在讲解统计这个单元的时候,我也学到了许多的知识。
原来不知道家里面支出和开销,回家以后,我把家里买东西的单据,水电交费单,牛奶费,加上自己的学费单,把它们收集整理,归类计算,哈哈,我终于知道家里的日常开销拉!拿给爸爸,妈妈看我计算出来的结果,他们开心的笑了。 通过这些实际的应用和操作,再次认识到实践对于知识的理解,掌握和熟练运用起着重要的作用。
自己的应用能力也得到了很好的培养。因为听到的终会忘记,看到的才能记住,亲身体验的才会更好的理解运用。
这样做既理解了知识,又学会了解决实际问题的方法。让生活中无时无刻都有数学的存在,也让同学们都来运用自己学到的知识去实践解决生活中的问题吧。
3.生活中的数学小故事100字
今天下午,我和妈妈来到超市买东西。 当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,就是40角,等于4元,而整包的要4.30元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑。
4.生活中有哪些数学知识,请列举,字要多一点
在我们生活的周围有很多的数学问题,这些数学问题贯穿于生活的方方面面,现实生活中,数学游戏有很多,比方说小朋友在打时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏.如“树上七个猴,地上一个猴,一共几个猴.”等等生活中的例子.这些游戏构成了我们生活中五彩缤纷的画卷.我们每天早上一起来,首先是对一天的事情进行一下比较简单的,一天中要干哪些事情,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学.一天的工作结束后,接下来的是对这一天进行的小结,小结是通过一个一个的数算进行的,运算的结果是一个个比较直观的数字.我们现实生活中,购物、估算、计算时间、确定位置和买卖股票等等都与数学有关.可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具.无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法.特别是随着计算机的普及与发展,这种需要更是与日俱增.无论是我们日常生活中的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持.而且,数学是和语言一样的一种工具,具有国际通用性.可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;城市里的下水道盖都有是圆形的,你知道这是为什么吗?人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面.这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要100条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用.因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影.在一年要结束的时候,商人在谈论中说我这一年的收入是多少,与去年相比怎么样;农民也在谈论这一年中收入多少粮食;工人也在谈论在这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生的学习成绩则是对一位教师一年来辛苦工作的衡量标准;单位也在做这样那样的总结.一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预算、程度等等.总之,生活中的数学可以说是无处不在,数学严重影响着我们的生活,是生活中的重要条件.因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它.。
5.生活中的数学知识
在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
6.生活中的数学小故事100字3篇要快,急
国庆期中,我和妈妈一起去超市购物,准备找找千克和克。
走进超市,首先来到了饼干柜旁,这么多琳琅满目的饼干中,我选择了我最喜欢闲趣饼干,我仔细看了看,终于在角落里找到了"净含量100克",说明这包饼干不含袋子的重量是100克,那要是有10包这样的饼干不就是1千克了。 接着我们又来到买米的地方,我发现一袋米要10千克,如果我们家每天吃2千克的话,我家每个月就要吃60千克,也就是这样的6袋米了。
后来我又看到了16个鸡蛋大约有1千克,一个菠萝大约2千克,一个西瓜大约3千克 今天,我收获真多啊,我感受到了数学中学到的千克和克这个知识,在生活中数学真的很重要。 今天下午,我和妈妈来到超市买东西。
当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。 可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4。
30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。
突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,就是40角,等于4元,而整包的要4。
30元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑。
今天,我看了一本书,心里感到很沉重。 里面讲了一个数学家,他家很穷,但很好学,就把他送到学校里去读书,可他不认真,一直玩,一天老师找他谈话:"你吃的饭,上学所花的钱,都是你父亲辛辛苦苦的劳动成果,你现在不好好学习,对得起谁啊?"他受到了很多的启发,他想:长大了,我要当一个天文学家,文学家。
但后来,他受到了一位从日本留学回来的老师的影响,又把兴趣转到了数学上,你们知道他是谁吗? 他就是我国著名的数学家苏步青。 吸烟有害健康 爸爸每天抽一报香烟,每包香烟20支,我了解到每支香烟能使人缩短寿命3分钟,那每天就会缩短 20X3=60分钟=1小时的寿命,每年就要缩短365天X1小时=365小时的寿命。
所以,我对爸爸说:"吸烟有害健康啊------。"。
7.给几个数学小故事、知识.简短
唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?2数字趣联宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.3点错的小数点学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.。
8.生活中的数学小故事50字
1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
3.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
4.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
5.20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
6.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
8.塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
9.高斯,德国著名数学家,并有“数学王子”的美誉。小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书,高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
9.生活中有哪些数学小常识
在我们生活的周围有很多的数学问题,这些数学问题贯穿于生活的方方面面,现实生活中,数学游戏有很多,比方说小朋友在打时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏。如“树上七个猴,地上一个猴,一共几个猴。”等等生活中的例子。这些游戏构成了我们生活中五彩缤纷的画卷。
我们每天早上一起来,首先是对一天的事情进行一下比较简单的,一天中要干哪些事情,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学。一天的工作结束后,接下来的是对这一天进行的小结,小结是通过一个一个的数算进行的,运算的结果是一个个比较直观的数字。
我们现实生活中,购物、估算、计算时间、确定位置和买卖股票等等都与数学有关。可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具。无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法。特别是随着计算机的普及与发展,这种需要更是与日俱增。无论是我们日常生活中的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持。而且,数学是和语言一样的一种工具,具有国际通用性。可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;城市里的下水道盖都有是圆形的,你知道这是为什么吗?人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面。这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要100条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用。因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影。
在一年要结束的时候,商人在谈论中说我这一年的收入是多少,与去年相比怎么样;农民也在谈论这一年中收入多少粮食;工人也在谈论在这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生的学习成绩则是对一位教师一年来辛苦工作的衡量标准;单位也在做这样那样的总结。
一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预算、程度等等。
总之,生活中的数学可以说是无处不在,数学严重影响着我们的生活,是生活中的重要条件。因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它。
海外有哪些让你感到震撼的城市建筑?
1. “记住,希望是件美好的事,也许是人间至善。”——《肖申克的救赎》
这句话表达了对希望的坚定信念,它能够激励人们在困难时刻坚持不懈,勇往直前。
2. “人生就像一盒巧克力,你永远不知道下一颗是什么味道。”——《阿甘正传》
这句话通过巧克力的比喻,表达了人生的不确定性和奇迹随时可能发生的态度。
3. “爱情是一朵美丽的花,需要时间来培养。”——《泰坦尼克号》
这句话表达了爱情需要耐心和培养的态度,也表达了对真爱的珍视和尊重。
4. “我们用人生最好的年华做抵押,去担保一个无法预见的未来。”——《大鱼海棠》
这句话表达了人们对未来的探索和追求,也表达了对年轻时光的珍惜和怀念。
5. “人类因梦想而伟大,因绝望而陷落。”——《钢铁侠》
这句话表达了梦想和绝望对人类的影响,也表达了勇气和坚定的态度。
6. “爱情不是寻找完美的人,而是学会看待一个不完美的人的完美之处。”——《爱情公寓》
这句话表达了对爱情的态度,也表达了对伴侣的尊重和欣赏。
7. “人生就像一场马拉松,不在乎起点,只在乎终点。”——《阿凡达》
这句话通过马拉松的比喻,表达了对人生的奋斗和追求,也表达了对成功的坚持和努力。
电脑是谁发明的?
海外的城市建筑种类繁多,代表着不同的历史文化和地域特色。这些建筑不仅体现了各自国家和地域的历史文化背景,也代表着人类的智慧和创造力。无论是古老的城堡、寺庙,还是现代的摩天大厦、公共建筑,都值得我们去欣赏和学习。以下为您介绍几个令人感到无比震撼的城市建筑:
1. 温莎城堡(英国):温莎城堡位于英国温莎小镇,是英国王室的主要住所。这座城堡的建筑风格相当古老,历史悠久。它包含了许多美术馆、大型花园和图书馆,还有一些富丽堂皇的宫殿。
温莎古堡
2. 科隆大教堂(德国):科隆大教堂是德国科隆市的最大宗教建筑,有着858年历史。这座大教堂位于莱茵河畔,有着典型的哥特式建筑特色。内部有大量的壁画和玻璃窗,让人感受到古代信仰的深厚魅力。
科隆大教堂
3. 布鲁塞尔的欧洲议会大厦:欧洲议会大厦位于比利时布鲁塞尔市中心,是欧洲议会的办公地点。大厦外形极其独特,呈铳钉形状,高度为15层,通过玻璃外壳的银色边缘体现了其现代感和未来感。
欧洲议会大厦
4. 纽约Empire State Building:纽约的帝国大厦是曾经世界上最高的建筑之一,直到11年是世界的第一高楼。它有着灰色的色调,摩天大楼的特点非常明显。在许多**和电视中,它也是曾经出现的重要地方之一。
帝国大厦
5. 雪兰莪双峰塔: 雪兰莪双峰塔坐落于马来西亚的吉隆坡市中心,是世界上最高的双子塔,也是非常典型的摩天大楼。建筑风格独特,外观有八个立方体形,象征着“八大特权”。此外,双峰塔还有一个特制的天气预报系统,可以轻松地检测天气情况,确保游客的安全。
双子塔
这些都是海外令人震撼的城市建筑,每一座建筑背后都有着属于它们的光辉历史和文化内涵。希望您有机会去见证这些建筑的气势和美感。
科技的发展给我们的生活带来了哪些变化?
电脑的发明者是约翰·冯·诺依曼。
计算机(computer)俗称电脑,是一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。
扩展资料:
电脑的主要特点如下:
1、折叠运算速度快。
当今计算机系统的运算速度已达到每秒万亿次,微机也可达每秒几亿次以上,使大量复杂的科学计算问题得以解决。例如:卫星轨道的计算、大型水坝的计算、24小时天气预报的计算等,过去人工计算需要几年、几十年,而现在用计算机只需几天甚至几分钟就可完成。
2、折叠计算精确度高。
科学技术的发展特别是尖端科学技术的发展,需要高度精确的计算。计算机控制的导弹之所以能准确地击中预定的目标,是与计算机的精确计算分不开的。一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几,是任何计算工具所望尘莫及的。
3、折叠有逻辑判断能力、
随着计算机存储容量的不断增大,可存储记忆的信息越来越多。计算机不仅能进行计算,而且能把参加运算的数据、程序以及中间结果和最后结果保存起来,以供用户随时调用;还可以对各种信息(如、语言、文字、图形、图像、音乐等)通过编码技术进行算术运算和逻辑运算,甚至进行推理和证明。
4、折叠有自动控制能力。
计算机内部操作是根据人们事先编好的程序自动控制进行的。用户根据解题需要,事先设计好运行步骤与程序,计算机十分严格地按程序规定的步骤操作,整个过程不需人工干预,自动执行,已达到用户的预期结果。
参考资料:
1、移动支付、电子商务、共享单车等互联网领域的创新成果已经成为中国新的技术名片,被网民归入“新四明”。新技术新应用层出不穷、各领风骚,让世界各国嘉宾看到了中国互联网发展的创新成果,点亮了百姓智慧新生活。
2、“神威·太湖之光”超级计算机、北斗卫星导航系统、量子计算通讯技术等代表了中国在高精尖技术上取得的最新突破。人们看到,中国在网络信息领域正展现出前所未有的创新自信。
3、智能翻译软件不仅能“听懂”人的话,还能将其实时翻译成英文。前往会场,智慧高效的安检系统和车辆调度让人深感便捷。漫步大会场馆内外,智能服务机器人等创新成果随处可见。
4、天猫无人超市运用了“行为轨迹分析”“情绪识别”“眼球追踪”等技术,在消费者、商品和店铺之间产生了丰富且个性化的互动。
5、人工智能将引领一个新的产品和服务体系。百度创始人、董事长李彦宏认为,人工智能的发展是个漫长的过程,而开放的深度学习平台将有利于推动整个人工智能产业的发展。
人民网-科技改变生活?智慧开启未来